Abundance-weighted phylogenetic diversity measures distinguish microbial community states and are robust to sampling depth
نویسندگان
چکیده
In microbial ecology studies, the most commonly used ways of investigating alpha (within-sample) diversity are either to apply non-phylogenetic measures such as Simpson's index to Operational Taxonomic Unit (OTU) groupings, or to use classical phylogenetic diversity (PD), which is not abundance-weighted. Although alpha diversity measures that use abundance information in a phylogenetic framework do exist, they are not widely used within the microbial ecology community. The performance of abundance-weighted phylogenetic diversity measures compared to classical discrete measures has not been explored, and the behavior of these measures under rarefaction (sub-sampling) is not yet clear. In this paper we compare the ability of various alpha diversity measures to distinguish between different community states in the human microbiome for three different datasets. We also present and compare a novel one-parameter family of alpha diversity measures, BWPDθ, that interpolates between classical phylogenetic diversity (PD) and an abundance-weighted extension of PD. Additionally, we examine the sensitivity of these phylogenetic diversity measures to sampling, via computational experiments and by deriving a closed form solution for the expectation of phylogenetic quadratic entropy under re-sampling. On the three datasets, a phylogenetic measure always performed best, and two abundance-weighted phylogenetic diversity measures were the only measures ranking in the top four across all datasets. OTU-based measures, on the other hand, are less effective in distinguishing community types. In addition, abundance-weighted phylogenetic diversity measures are less sensitive to differing sampling intensity than their unweighted counterparts. Based on these results we encourage the use of abundance-weighted phylogenetic diversity measures, especially for cases such as microbial ecology where species delimitation is difficult.
منابع مشابه
Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities.
The assessment of microbial diversity and distribution is a major concern in environmental microbiology. There are two general approaches for measuring community diversity: quantitative measures, which use the abundance of each taxon, and qualitative measures, which use only the presence/absence of data. Quantitative measures are ideally suited to revealing community differences that are due to...
متن کاملPhylogenetic distance in Great Salt Lake microbial communities
Investigations of community composition often rely on metrics based on the abundance of taxonomic groups to estimate biodiversity. Although traditional measures of biodiversity, such as richness and evenness, can be used in a comparative fashion to evaluate differences among communities in both temporal and spatial contexts, these measures generally omit a phylogenetic perspective of the evolut...
متن کاملPhylogenetic diversity promotes ecosystem stability
Ecosystem stability in variable environments depends on the diversity of form and function of the constituent species. Species phenotypes and ecologies are the product of evolution, and the evolutionary history represented by co-occurring species has been shown to be an important predictor of ecosystem function. If phylogenetic distance is a surrogate for ecological differences, then greater ev...
متن کاملPhylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history.
Phylogenetic information is increasingly being used to understand the assembly of biological communities and ecological processes. However, commonly used metrics of phylogenetic diversity (PD) do not incorporate information on the relative abundances of individuals within a community. In this study, we develop three indices of PD that explicitly consider species abundances. First, we present a ...
متن کاملPhylogenetic Diversity Theory Sheds Light on the Structure of Microbial Communities
Microbial communities are typically large, diverse, and complex, and identifying and understanding the processes driving their structure has implications ranging from ecosystem stability to human health and well-being. Phylogenetic data gives us a new insight into these processes, providing a more informative perspective on functional and trait diversity than taxonomic richness alone. But the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2013